Impact of Formulation and Process Variations on the Quality of Freeze Dried Products: How do we identify, control, and characterize critical variations?

Michael J. Pikal
School of Pharmacy
University of Connecticut
A NIPTE Institution

Some Quality Attributes for Freeze Dryingnot all <u>Critical</u>

- Sterility-critical
- Low endotoxin-critical
- Stability-critical*
 - adequate potency
 - absence of toxic degradation products
- Rapid and easy reconstitution
- Cost effective process (i.e., fast)
- Fast development process (speed to market)
- "Elegance"- "beauty is in the eye of the beholder"

 Note: some are impacted by formulation, some by process, and many by both formulation & process

Storage Stability is **Very** Sensitive to Formulation

Human Growth Hormone Formulations

Rate Constants, k(Vt), at 40C (40 C << Tg)

	S	TD					
					NEV	/	

^{*} all formulations except Gly:Mann are glassy

^{**} Trend is same for both chemical degradation and aggregation!

Significance of Results

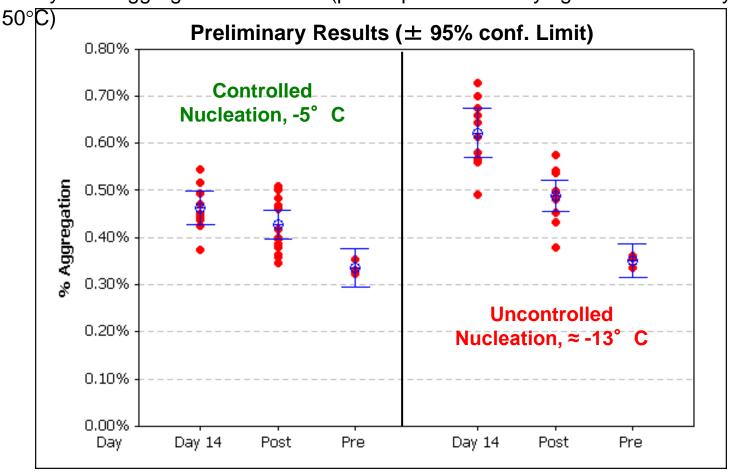
- Standard, "Current most used" commercial formulation
 - ≈ 3% aggregation in 2 yrs at <u>Refrigerated Storage</u> (estimated from literature data)
- Simple Sucrose Based Formulation
 - ≈3000 years to form 3% aggregate at 25 C° (estimated from literature data)

Formulation <u>Does</u> Matter!

Control of Stability by Process Control Use "Good Freeze Drying Practice" to guide control

- Freezing-convert water to ice
 - Control by control of ice nucleation temperature
 - Stability implications
- Primary Drying-sublime the ice
 - Control Product Temperature History
 - You freeze dry the product, not the shelf! (Felix Franks)
 - "Possible" stability implications
- Secondary Drying-remove non-freezable water
 - Control Product Temperature
 - Stability implications

Control of Freezing

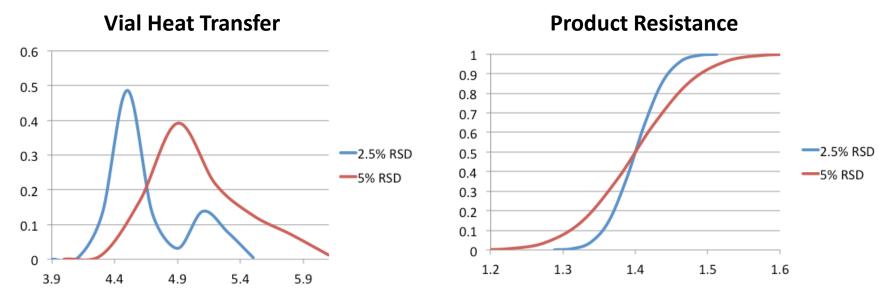

- Conventional freezing is uncontrolled
 - Variable ice nucleation temperature
 - Development to production, intra- and inter-batch
 - Variable ice surface area means variable drying time and (potentially) variable stability
 - High surface area means potential for protein aggregation.
- Solution: Controlled Ice Nucleation
 - At least two commercial versions available for both manufacturing and development
 - Nucleate at moderate super-cooling (low surface area)
 - Same process for development as in manufacturing

hGH Aggregation Study

Compare Stability "in-process" and "in storage" for conventional uncontrolled nucleation and controlled nucleation

Experiments

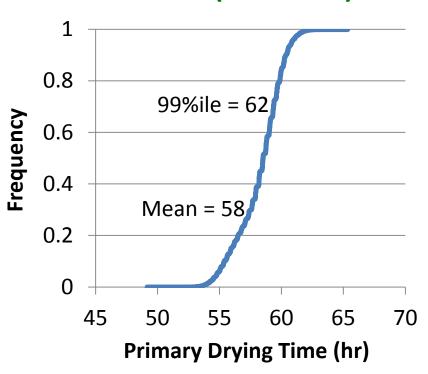
- 2 mg/mL hGH + 2 mM sodium phosphate + 6 mg/mL sucrose
- Assay hGH aggregation via HPLC (pre- & post-freeze drying and after 14 days at

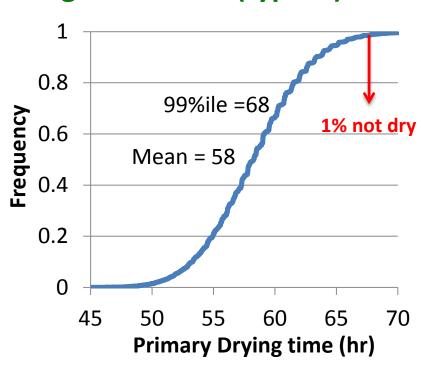

Examine Variance by Propagation of Errors#

Sources of variance:

Fill Volume, Pressure Variation,

Product Resistance* (ice nucleation), Heat transfer Coefficient*

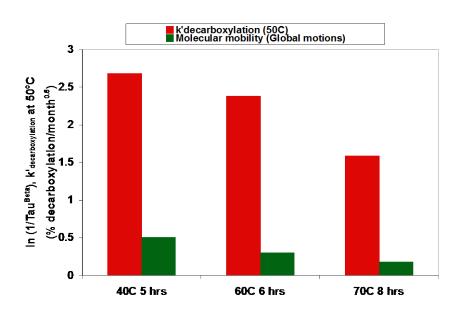

* Major Contributor


Note: 5% RSD more typical of most experimental systems

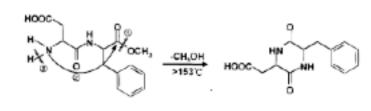
Impact on Primary Drying Time

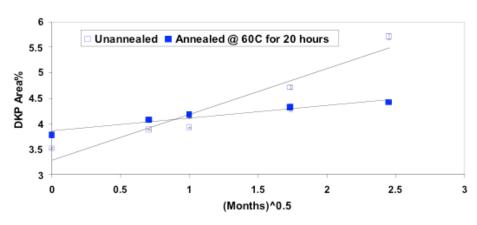
Low Variances (desirable)

High Variances (typical)



Solution: Minimize variance and need to adjust "Design Space" to accommodate expected variation


Product Temperature in Secondary Drying


Exposure to high temperature <u>Stabilizes!</u>

Decarboxylation in Moxalactam Na

Aspartame: sucrose (1:10) formulation

Water Contents are essentially Identical!

Conclusion: Secondary Drying Temperature matters

Conclusions

- Formulation Matters
- Process Matters
 - Even if processes are "nominally" the same
- Intrinsic Variation in Process Matters